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a b s t r a c t

We improve on a limit theorem (see Martin et al. (2011) [13], Th. 5.1) for numerical index
n(·) for large classes of Banach spaces including vector valued ℓp-spaces and ℓp-sums of
Banach spaces where 1 ≤ p < ∞. We introduce two conditions on a Banach space X , a
local characterization condition (LCC) and a global characterization condition (GCC). We
prove that if a norm on X satisfies the (LCC), then n(X) = limm n(Xm). An analogous result,
in which N will be replaced by a directed, infinite set S will be proved for X satisfying
the (GCC). We also present examples of Banach spaces satisfying the above mentioned
conditions.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a Banach space over R or C. We write BX for the closed unit ball and SX for the unit sphere of X . The dual space
is denoted by X∗ and the Banach algebra of all continuous linear operators on X is denoted by B(X). For a linear subspace Y
of X we denote by P (X, Y ) the set of all linear, continuous projections from X onto Y .

Definition 1.1. The numerical range of T ∈ B(X) is defined by

W (T ) = {x∗(Tx) : x ∈ SX , x∗
∈ SX∗ , x∗(x) = 1}.

The numerical radius of T is then given by

ν(T ) = sup{|λ| : λ ∈ W (T )}.

Clearly, ν(·) is a semi-norm on B(X) and ν(T ) ≤ ∥T∥ for all T ∈ B(X). The numerical index of X is defined by

n(X) = inf{ν(T ) : T ∈ SB(X)}.

Equivalently, the numerical index n(X) is the greatest constant k ≥ 0 such that k∥T∥ ≤ ν(T ) for every T ∈ B(X). The concept
of numerical index was first introduced by Lumer [1] in 1968. Since then, much attention has been paid to this equivalence
constant between the numerical radius and the usual norm in the Banach algebra of all bounded linear operators of a Banach
space. It is known that 0 ≤ n(X) ≤ 1 if X is a real space, and 1

e ≤ n(X) ≤ 1 if X is a complex space. Furthermore, n(X) > 0
if and only if ν(·) and ∥ · ∥ are equivalent norms. Calculation of the numerical index for some classical Banach spaces can be
found in [2,3]. For more recent results we refer the reader to [4–14]. In [15] it is shown that

n(ℓp) = n(Lp[0, 1])
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for a fixed 1 < p < ∞. In the same paper it is also established that n(ℓm
p ) ≠ 0 for finite m in the real case. In [6] the

numerical index of vector-valued function spaces is considered and a proof of

n(Lp(µ, X)) = lim
m

n(ℓm
p (X))

is provided for a Banach space X and for 1 ≤ p < ∞. Furthermore, it was recently proven in [16] that n(Lp(µ)) > 0 for p ≠ 2
and µ any positive measure, in the real case. In this paper we obtain the above type of limit theorem for a class of Banach
spaces including vector valued ℓp or Lp spaces. Ourmain result is an improvement of the limit theorempresented in [13]. The
study of numerical index of absolute sums of Banach spaces is given in [13], where under suitable conditions it is shown that
the numerical index of a sum is greater than or equal to the limsup of the numerical index of the summands (see Theorem
5.1 of [13]). In this paper, we show that the liminf of the numerical index of the summands is greater than or equal to the
numerical index of the sum if the Banach space satisfies a condition called the local characterization condition (LCC) or a
condition called the global characterization condition (GCC).We show that if a norm on X satisfies the local characterization
condition, then

n(X) = lim
m

n(Xm)

and

n(X) = lim
s∈S

n(Xs)

where S is any directed, infinite set and X satisfies the global characterization condition.We also provide examples of spaces
where (LCC) or (GCC) is satisfied.

2. Main results

The following theorem, which is a direct consequence of ([14], Th. 2.5), plays a crucial role in our further investigations.

Theorem 2.1. Let X be a Banach space over R or C and let

Π(X) = {(x, x∗) ∈ SX × SX∗ : x∗(x) = 1}.

Denote by π1 the natural projection from Π(X) onto SX defined by π1(x, x∗) = x. Fix a set Γ ⊂ Π(X) such that π1(Γ ) is dense
in SX . Then for any T ∈ B(X),

ν(T ) = sup{|x∗(Tx)| : (x, x∗) ∈ Γ }.

Applying the above theorem one can prove the following.

Corollary 2.2. Let X be an infinite-dimensional Banach space and let Y ⊆ X be its linear subspace whose norm-closure is equal
to X . Define for L ∈ L(X),

νY (L) = sup{|x∗Lx| : x∗
∈ SX∗ , x ∈ SY , x∗(y) = 1}. (2.1)

Then ν(L) = νY (L).

Definition 2.3. Let X be a Banach space and X1 ⊂ X2 ⊂ · · · ⊂ X be its subspaces such that X =


∞

m=1 Xm. Suppose for
any m ∈ N there exists Pm ∈ P (Xm+1, Xm) with ∥Pm∥ = 1. We say the norm on X , ∥.∥X satisfies the local characterization
condition (LCC) with respect to {Pm}

∞

m=1 if and only if for any m ∈ N there exists Dm a dense subset of SXm+1 such that for
any x ∈ Dm there exist x∗

∈ SX∗
m+1

a norming functional for x in X∗

m+1 and a constant bm(x) ∈ R+ such that bm(x)x∗
|Xm is a

norming functional for Pmx in X∗
m. (In fact, if Pm(x) ≠ 0, then bm(x) = ∥Pm(x)∥/x∗(Pm(x)).)

We start by investigating some consequences of (LCC).

Proposition 2.4. Let X be a Banach space satisfying (LCC) with respect to {Pm}
∞

m=1. For a fixed m ∈ N and L ∈ L(Xm), define a
sequence

wm(L) = ν(L), wm+1(L) = ν(L ◦ Pm), . . . , wm+j(L) = ν(L ◦ Qm,j),

where Qm,j = Pm ◦ · · · ◦ Pm+j−1. (For j ≥ 1 ν(L ◦ Qm,j) denote the numerical radius of L ◦ Qm,j with respect to Xm+j.) Then
ν(L) = wm(L) = wm+j(L) for j = 1, 2, . . . .

Proof. Since Xm ⊂ Xm+1 for any m ∈ N, it is easy to see that wm+j(L) is an increasing sequence with respect to j, since

wm+j(L) = sup{|x∗L ◦ Qm,jx| : x ∈ SXm+j , x
∗

∈ SX∗
m+j

, x∗(x) = 1}

≤ sup{|x∗LQm,jPm+jx| : x ∈ SXm+j+1 , x
∗

∈ SX∗
m+j+1

, x∗(x) = 1} = wm+j+1(L).
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Now we prove that wm = wm+1. To do this for any x ∈ Dm select x∗
x ∈ SX∗

m+1
satisfying the requirements of Definition 2.3.

Set

Γm = {(x, x∗

x ) ∈ Π(Xm+1) : x ∈ Dm}.

Note that by Definition 2.3,

bm(x)
∥Pm(x)∥

=
1

x∗(Pm(x))
≥ 1.

Hence for any (x, x∗
x ) ∈ Γm,

|x∗

x ◦ L ◦ Pmx| = |(x∗

x )|Xm ◦ L ◦ Pmx| ≤
bm(x)
∥Pmx∥

|(x∗

x )|Xm ◦ L ◦ Pmx|

= |(bm(x)x∗

x )|XmL


Pmx
∥Pmx∥


| ≤ ν(L).

Notice that by Definition 2.3, π1(Γm) = Dm and Dm is dense in SXm+1 . By Theorem 2.1 applied to Γm and L ◦ Pm,

wm+1(L) = ν(L ◦ Pm) ≤ ν(L) = wm(L)

and thus wm(L) = wm+1(L). Induction on j results in wm(L) = wm+j(L). �

Proposition 2.5. Let Pj ∈ P (Xj+1, Xj) with ∥Pj∥ = 1. For a fixed m ∈ N, define projections Qm,j ∈ P (Xm+j, Xm) as Qm,j =

Pm ◦ Pm+1 ◦ · · · ◦ Pm+j−1. Then

lim
j→∞

Qm,j = Qm

where Qm ∈ P (X, Xm) with ∥Qm∥ = 1 and X =


∞

m=1 Xm.

Proof. Let x ∈


∞

m=1 Xm, then there is a minimal index k such that x ∈ Xk. Choose an index jk such thatm+ jk − 1 ≥ k. Note
that Qm,jx = Qm,jkx for all j ≥ jk. This follows from the very definition of

Qm,j(x) = Qm,jk ◦ (Pm+jk ◦ · · · ◦ Pm+j−1)(x)

and the fact that Pm+jk is a projection onto Xm+jk−1 with Xk ⊂ Xm+jk−1 implying

(Pm+jk ◦ Pm+jk+1 · · · ◦ Pm+j−1)(x) = x.

Define the limit of the almost constant sequence {Qm,jx} as limj→∞ Qm,j(x) = Qm(x) for all x ∈


∞

m=1 Xm. Since a continuous,
linear map defined on a dense subspace can be uniquely extended to the whole space, we can extend Qm uniquely to
X =


∞

m=1 Xm. It is clear that Qm ∈ P (X, Xm) and ∥Qm∥ = 1. �

Proposition 2.6. For a fixed m ∈ N and L ∈ L(Xm) we have

wm+j(L) ≤ ν(L ◦ Qm)

for all j, where ν(L ◦ Qm) denotes the numerical radius of L ◦ Qm with respect to X .

Proof. Since ν(L ◦ Qm) = sup{|x∗L ◦ Qmx| : x ∈ SX , x∗
∈ SX∗ , x∗(x) = 1}, it is clear that

ν(L ◦ Qm) ≥ sup{|x∗L ◦ Qmx| : x ∈ SXm+j , x
∗

∈ SX∗
m+j

, x∗(x) = 1}

and that Qm(x) = Qm,j+1(x) for any x ∈ Xm+j, implies ν(L ◦ Qm) ≥ wm+j(L). �

Proposition 2.7. Let X satisfy (LCC) with respect to {Pm}
∞

m=1. Then for any m ∈ N and L ∈ L(Xm),

ν(L) = ν(L ◦ Qm),

where Qm ∈ P (X, Xm) are defined in Proposition 2.5.

Proof. By Proposition 2.6, ν(L) ≤ ν(L◦Qm). To prove the converse, we apply Corollary 2.2. Let Y =


∞

m=1 Xm. First we prove
that for any j ∈ N,

νY (L ◦ Qm) ≤ wm+j(L) (2.2)

where νY is defined in Corollary 2.2. To do that fix ϵ > 0. By the definition of νY there exist j ∈ N, x ∈ SXm+j and x∗
∈ SX∗

m+j

with x∗(x) = 1 such that

νY (L ◦ Qm) ≤ |x∗(LQm)x| + ϵ ≤ |x∗(LQm,j+1)x| + ϵ ≤ wm+j(L) + ϵ,
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which shows our claim. Note that by Proposition 2.4,wm+j(L) = wm(L) = ν(L) and by Corollary 2.2, νY (L◦Qm) = ν(L◦Qm),
which completes our proof. �

Proposition 2.8. Assume that ∥ · ∥X satisfies (LCC). Then for any m ∈ N,

n(Xm) ≥ n(X).

Proof. Fix ϵ > 0,m ∈ N and choose L ∈ L(Xm), ∥L∥ = 1 such that n(Xm) + ϵ > ν(L). By (LCC) and Proposition 2.7,

ν(L) = ν(L ◦ Qm).

Since ∥Qm∥ = 1, n(Xm) + ϵ ≥ n(X) for any ϵ > 0. Hence n(Xm) ≥ n(X), as required. �

Theorem 2.9. Let X and Xm and Pm be as in Definition 2.3. Then

n(X) = lim
m

n(Xm).

Proof. By Proposition 2.8, n(Xm) ≥ n(X) for any m ∈ N. Hence,

lim inf
m

n(Xm) ≥ n(X).

By Theorem 5.1 of [13], we already know that

n(X) ≥ lim sup
m

n(Xm),

which proves the equality. �

Nowwe introduce another conditionwhich permits us to prove an analogous result to Theorem2.9 in amore general setting.

Definition 2.10. Let X be a Banach space and let {Xs}s∈S be a family of subspaces of X such that X =


s∈S Xs. Assume that
for any s1, s2 ∈ S there exists s3 ∈ S such that Xs1 ∪ Xs2 ⊂ Xs3 , i.e. the family {Xs}s∈S forms a directed set. Suppose for any
s ∈ S there exists Ps ∈ P (X, Xs) with ∥Ps∥ = 1. We say the norm on X , ∥.∥X satisfies the global characterization condition
(GCC) with respect to {Ps}s∈S if and only if for any s ∈ S there exists Ds a dense subset of SX such that for any x ∈ Ds there
exist x∗

∈ SX∗ a norming functional for x in X and a constant bm(x) ∈ R+ such that bs(x)x∗
|Xs is a norming functional for Psx

in X∗
s . (In fact, if Ps(x) ≠ 0, then bs(x) = ∥Ps(x)∥/x∗(Ps(x)).)

Remark 2.11. Note that if S = N and Xs ⊂ Xz for s, z ∈ N, s ≤ z then the global characterization condition (GCC) implies
the local characterization condition (LCC).

The above definition is motivated by the space X = ℓp with 1 < p < ∞, Xm = ℓ
(m)
p and a sequence of projections {Pm}

∞

m=1
defined by

Pm(x1, . . . , xm, xm+1, . . .) = (x1, . . . , xm, 0, . . .).

For x ≠ 0 and x ∈ ℓp, the form of the norming functional is x∗
=

(|xi|p−1sgn(xi))

∥x∥p−1
p

and clearly

x∗
|Xm =

(|xi|p−1sgn(xi))

∥x∥p−1
p

where i ∈ {1, 2, . . . ,m}

and the norming functional for Pmx, (Pmx)∗ takes the form

(Pmx)∗ =
(|xi|p−1sgn(xi))

∥Pmx∥
p−1
p

where bm(x) =
∥x∥p−1

p

∥Pmx∥
p−1
p

.

The above (GCC) is also satisfied for norms of ℓ1 and c0 (with the same sequence {Pm}
∞

m=1). Now we prove the following.

Theorem 2.12. Let X and Xs and Ps be as in Definition 2.10. Then

n(X) = lim
s

n(Xs).

Proof. By Theorem 5.1 of [13], we already know that

n(X) ≥ lim sup
s

n(Xs).
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Now we prove that

lim inf
s

n(Xs) ≥ n(X).

Fix s ∈ S and L ∈ L(Xs). We show that ν(L) ≥ ν(L ◦ Ps), where ν(L) denotes the numerical radius of L with respect to Xs
and ν(L ◦ Ps) denotes the numerical radius of L ◦ Ps with respect to X . To do that, for any x ∈ Ds select x∗

x ∈ SX∗ satisfying
the requirements of Definition 2.10. Let

Γs = {(x, x∗

x ) ∈ Π(X) : x ∈ Ds}.

Observe that for any s ∈ S,

bs(x)
∥Ps(x)∥

=
1

x∗(Ps(x))
≥ 1.

Note that by Definition 2.10, for any (x, x∗
x ) ∈ Γs,

|x∗

x ◦ L ◦ Psx| = |(x∗

x )|Xs ◦ L ◦ Psx| ≤
bs(x)
∥Psx∥

|(x∗

x )|Xs ◦ L ◦ Psx|

= |(bs(x)x∗

x )|XsL


Psx
∥Psx∥


| ≤ ν(L).

Notice that by Definition 2.10, π1(Γs) = Ds and Ds is dense in SX . By Theorem 2.1 applied to Γs and L ◦ Ps, ν(L ◦ Ps) ≤ ν(L),
as required. Hence we immediately get that

n(Xs) = inf{ν(L) : L ∈ L(Xs), ∥L∥ = 1} ≥ inf{ν(W ) : L ∈ L(X), ∥W∥ = 1} = n(X).

Consequently lim infs n(Xs) ≥ n(X) and finally lims n(Xs) = n(X), as required. �

Now we present an example of a Banach space X satisfying condition (GCC) given in Definition 2.10.

Example 2.13. Let S be a directed and infinite set. Fix p ∈ [1, ∞). Let Xp
= (⊕s∈S Xs)p be the direct, generalized lp-sum of

Banach spaces (Xs, ∥.∥s)s∈S , defined as

Xp
=


(xs)s∈S : xs ∈ Xs, card(supp ((xs)s∈S)) ≤ ℵo and


s∈S

(∥xs∥s)
p < ∞


,

where supp ((xs)s∈S) = {s ∈ Xs : xs ≠ 0}. Clearly, the norm x ∈ Xp is

∥x∥ =


s∈S

(∥xs∥s)
p

1/p

and in case S = N and Xi = X for all i ∈ N, Xp
= ℓp(X). Fix any finite set W ⊂ S. Next, we consider spaces ZW = ⊕s∈W Xs

and the projections

PW ((xs)s∈S) = (zs)s∈S,

where zs = xs for s ∈ W and zs = 0 otherwise. Let F = {W ⊂ S : card(W ) < ∞}. Now we show that (GCC) is satisfied
for X , {ZW }W∈F and {PW }W∈F . It is obvious that ∥PW∥ = 1 for any finite subset W of S and p ∈ [1, ∞). Now assume that
1 < p < ∞. To show that the characterization condition is satisfied for the norm on X , note that for any x ∈ Xp

\ {0} there
exists a norming functional of the form

x∗
=


∥xs∥

p−1
s x∗

s (.)

s∈S

s∈S
(∥xs∥s)p

 p−1
p

where x∗
s ∈ X∗

s is a norming functional for xs ∈ Xs. Setting C = (


s∈S(∥xs∥s)
p)

p−1
p , to see ∥x∗

∥ ≤ 1, let y ∈ X be an element
with ∥y∥ = 1, then

|x∗(y)| =



s∈S

(∥xs∥s)
p−1 x∗

s (ys)

C

 ≤
1
C


s∈S

(∥xs∥s)
p−1

|x∗

s (ys)|.
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Applying the Hölder inequality with conjugate pairs p and q:

|x∗(y)| ≤
1
C


s∈S

∥xs∥p−1
s

q 1
q

.


s∈S

∥ys∥p
s

 1
p

.

Since q =
p

p−1 and ∥y∥ =


s∈S ∥ys∥
p
s
 1

p = 1 we have |x∗(y)| ≤ 1. It is easy to see that x∗ is a norming functional for x
because

x∗(x) =
1
C


s∈S

∥xs∥p−1
s x∗

s (x) =
∥x∥p

∥x∥p−1
= 1.

Furthermore, if PW ≠ 0, from

(PW x)∗ =


∥xw∥

p−1
w x∗

w(.)

w∈W 

w∈W
∥xw∥

p
w

 p−1
p

and writing x∗
|ZW we obtain that bW (x) =

∥x∥p−1

∥PW x∥p−1 . If p = 1 then for any x ∈ X1
\ {0} there exists a norming functional of

the form (x∗
s (.))s∈S where x∗

s ∈ X∗
s is a norming functional for xs ∈ Xs. It is easy to see that

∥(x∗

s (.))s∈S∥ = sup
s∈S

∥x∗

s ∥.

Reasoning as in the previous case we get that (GCC) is satisfied for p = 1.

Now we present an example of a Banach space X satisfying the (LCC) given in Definition 2.3.

Example 2.14. Let for n ∈ N (Yn, ∥ · ∥n) be a Banach space. Set X1 = Y1 and Xn = Xn−1 ⊕ Yn. Let for n ∈ N, let pn ∈ [1, ∞).
Define a norm | · |1 on X1 by |x|1 = ∥x∥1 and a norm | · |2 on X2 by

|(x1, x2)|2 = (∥x1∥
p1
1 + ∥x2∥

p1
2 )1/p1 ,

where xi ∈ Yi for i = 1, 2. Then having defined | · |n for x = (x1, . . . , xn) ∈ Xn we can define | · |n+1 on Xn+1 by

|(x, xn+1)|n+1 = (|x|pnn + ∥xn+1∥
pn
n+1)

1/pn .

Note that if x ∈ Xn, and m ≥ n, then |x|m = |x|n. Let

F = {{yn} : yn ∈ Yn and yn = 0 whenever n ≥ m depending on {yn}}.

One can identify F with


∞

n=1 Xn, thus enabling us to define for x ∈ F , its norm as:

∥x∥F = lim
n

|x|n,

because for fixed x ∈ F the sequence |x|n is constant from some point on by the above mentioned property. Notice that the
completion of F (we will denote it by X) is equal to the space of all sequences {xn} such that xn ∈ Xn and

lim
n

∥Qnx∥F = sup
n

∥Qnx∥F < +∞,

where for n ∈ N and x = (x1, x2, . . .)

Qn(x) = (x1, . . . , xn, 0, . . .).

Indeed, let {xs} be a Cauchy sequence in X . Notice that by definition of ∥ · ∥F , ∥Qn|X∥ = 1. Hence for any ϵ > 0, there exists
N ∈ N such that for any s, k ≥ N and n ∈ N,

∥Qn(xs − xk)∥n ≤ ϵ.

Consequently, for any n ∈ N,Qn(xs) converges to some point in Xn. Hence for any i ∈ N (xs)i → xi ∈ Yi. Set x = (x1, x2, . . .).
Then, it is easy to see that x ∈ X, since any Cauchy sequence is bounded and

∥Qn(x)∥F = lim
s

∥Qn(xs)∥F ≤ sup
s

∥xs∥F < +∞.

Moreover, for fixed ϵ > 0, for s, k ≥ N and any n ∈ N,

∥Qn(xk − xs)∥F ≤ ∥xs − xk∥F ≤ ϵ.
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Hence fixing k ≥ N and taking limit over s we get for any n ∈ N,

∥Qn(xk − x)∥F ≤ ϵ,

and consequently ∥x − xk∥X ≤ ϵ for k ≥ N, which shows that {xk} converges to x ∈ X . Hence X is a Banach space. Since for
any x ∈ X, limn ∥Qn(x) − x∥ = 0, F is a dense subset of X . Note that for any n ∈ N a map Pn : Xn+1 → Xn given by

Pn(x1, . . . , xn, xn+1) = (x1, . . . , xn, 0),

is a linear projection of norm one. By Definition 2.3 and the proof from Example 2.13, the (LCC) is satisfied for the norm on X .

Remark 2.15. If for any n ∈ N, Yn = R and pn = p ∈ [1, ∞) then the space X from Theorem 2.9 is equal to lp. If
pn = p ∈ [1, ∞) for any n ∈ N and the Banach spaces Yi are arbitrary then

X = Y1 ⊗p Y2 ⊗p Y3 ⊗p · · ·

If Yn = Y for any n ∈ N, then X = lp(Y ).

Acknowledgment

The second author was supported by the State Committee for Scientific Research, Poland (grant no. N N201 541 348).

References

[1] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961) 29–43.
[2] F.F. Bonsall, J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, in: LondonMath. Soc., Lecture Note Ser.,

vol. 2, Cambridge University Press, 1971.
[3] F.F. Bonsall, J. Duncan, Numerical ranges II, in: London Math. Soc., Lecture Note Ser., vol. 10, Cambridge University Press, 1971.
[4] A.G. Aksoy, B.L. Chalmers, Minimal numerical radius extension of operators, Proc. Amer. Math. Soc. 135 (4) (2007) 1039–1050.
[5] A.G. Aksoy, G. Lewicki, Best approximation in numerical radius, Numer. Funct. Anal. Optim. 32 (6) (2011) 593–609.
[6] E. Ed-dari, M.A. Khamsi, A.G. Aksoy, On the numerical index of vector-valued function spaces, Linear Multilinear Algebra 55 (6) (2007) 507–513.
[7] E. Ed-dari, On the numerical index of Banach spaces, Linear Algebra Appl. 403 (2005) 86–96.
[8] C. Finet, M. Martín, R. Payá, Numerical index and renorming, Proc. Amer. Math. Soc. 131 (3) (2003) 871–877.
[9] K.E. Gustafson, D.K.M. Rao, Numerical range: The Field of Values of Linear Operators and Matrices, Springer-Verlag UTX, New York, 1997.

[10] Vladimir Kadets, Miguel Martín, Javier Merí, Rafel Payá, Convexity and smootheness of Banach spaces with numerical index 1, Illinois J. Math. 53 (1)
(2009) 163–182.

[11] G. López, M. Martín, R. Payá, Real Banach spaces with numerical index 1, Bull. London Math. Soc. 31 (1999) 207–212.
[12] M. Martín, A survey on the numerical index of Banach space, Extracta Math. 15 (2000) 265–276.
[13] M. Martin, J. Meri, M. Popov, B. Randrianantoanina, Numerical index of absolute sums of Banach spaces, J. Math. Anal. Appl. 375 (1) (2011) 207–222.
[14] A.R. Palacios, Numerical ranges of uniformly continuous functions on the unit sphere of a Banach space, J. Math. Anal. Appl. 297 (2004) 472–476.
[15] E. Ed-dari, M.A. Khamsi, The numerical index of the Lp space, Proc. Amer. Math. Soc. 134 (7) (2005) 2019–2025.
[16] M. Martin, J. Meri, M. Popov, On the numerical index of Lp(µ)-spaces, Israel J. Math. 184 (2011) 183–192.


	Limit theorems for the numerical index
	Introduction
	Main results
	Acknowledgment
	References


